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Diazo(trimethylsilyl)methylmagnesium bromide smoothly reacted with t-butyl aryl(oxo)acetates to
afford the corresponding arylpropiolates via alkylidenecarbene intermediates. In this reaction system,
the magnesium bromide salt of trimethylsilyldiazomethane was significantly efficient compared to the
lithium one, commonly known as a reagent for the conversion of aldehydes and aryl ketones into
acetylenes.

� 2008 Elsevier Ltd. All rights reserved.
Table 1
Examination of reaction conditions

CO2R

O

TMSC(M)N2
CO2R

1 and 3a

THF
ConditionsMeO

MeO

2 and 4a

Entry Substrate TMSC(M)N2 Conditions Yield
(%)

1 1 (R = Et) TMSC(Li)N2 (1.2 equiv) �78 �C, 1 h?reflux, 3 h 11 (2)
2 3a

(R = But)
TMSC(Li)N2 (1.2 equiv) �78 �C, 1 h?reflux, 3 h 20

(4a)
3 3a TMSC(MgBr)N2

(1.5 equiv)
�78 �C, 1.5 h?reflux,
1 h

54
(4a)

4 3a TMSC(MgBr)N2

(1.5 equiv)
�78 �C, 3 h?reflux, 1 h 56

(4a)
5 3a TMSC(MgBr)N2

(1.5 equiv)
�78 �C, 3 h?reflux, 2 h 64

(4a)
6 3a TMSC(MgBr)N2

(1.5 equiv)
�78 �C, 3 h?reflux, 3 h 60

(4a)
Arylpropiolates have attracted attention as useful intermediates
in organic synthesis,1 and have been generally prepared by modi-
fied Wittig methodology using acid chlorides and triphenylphos-
phoranylidene acetates followed by flash vacuum pyrolysis,2

Corey–Fuchs homologation3 of aryl aldehydes followed by treat-
ment of the resulting aryl acetylides with chloroformates, cross-
coupling reactions of aryl iodides with propiolates (modified Sono-
gashira reaction),4 or reaction of aldehydes with Ph3P and
Br3CCO2Et.5

Quite recently, we have reported a convenient preparation of
arylpropiolates from aryl aldehydes using lithium trimethylsilyl-
diazomethane (TMSC(Li)N2) in one-pot process, which involves
the homologation of aldehydes to aryl acetylenes6 via alkylidene-
carbene intermediates, followed by ethoxycarbonylation of the
resulting acetylenes with ethyl chloro(or cyano)formate.7 As an
extension of this work, we now wish to describe a new and conve-
nient synthesis of arylpropiolates from aryl(oxo)acetates via alkyl-
idenecarbene intermediates.

Initially, the examination of reaction conditions using
(p-methoxyphenyl)(oxo)acetates was carried out as shown in
Table 1.8,9 Similarly to the preparation of arylacetylenes from aryl
ketones,6 upon treatment of 1 with TMSC(Li)N2 in THF at �78 �C
followed by heating under reflux conditions, 1 was converted to
the desired (p-methoxyphenyl)propiolate 2, but the yield was very
ll rights reserved.
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low (entry 1). In this reaction, there is a possibility that the reaction
of TMSC(Li)N2 with an ester moiety of 1 competes with that with a
ketone moiety. Therefore, the ethyl ester of 1 was replaced by more
bulky tert-butyl ester 3a. As a result, the use of 3a as a substrate led
to a slight increase in the yield of the corresponding acethylene 4a
(entry 2). Interestingly, by changing the counter cation of
TMSC(Li)N2 from Li to MgBr,10 the reaction efficiency was
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Table 2
Examination of reaction conditions

Ar CO2But

O
TMSC(MgBr)N2 (1.5 eq.)

CO2ButAr

3 4

THF
–78 °C, 3 h → reflux, 2 h

Entry Ar Substrate Yield (%)

1a p-(MeO)Ph 3a 64 (4a)
2 Ph 3b 58 (4b)
3 p-ClPh 3c 52 (4c)
4 o-MePh 3d 58 (4d)
5 2-Naphthyl 3e 61 (4e)
6 2-Pyridyl 3f 16 (4f)
7 3-Pyridyl 3g 27 (4g)
8 2-Furyl 3h 52 (4h)
9 2-Thienyl 3i 54 (4i)

10 2-Benzo[b]thienyl 3j 42 (4j)

a Shown in entry 5 of Table 1.
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Scheme 1.
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dramatically improved and 4a was obtained in 54–64% yields
(entries 3–6).

Next, using the optimized reaction conditions (entry 5 in
Table 1), the reactions with various t-butyl aryl(oxo)acetates were
examined (Table 2).8,9 Analogously to 3a, TMSC(MgBr)N2 smoothly
reacted with t-butyl aryl(oxo)acetates such as phenyl (3b), p-chlo-
rophenyl (3c), o-tolyl (3d), or 2-naphthyl (3e) ones to afford the
corresponding arylpropiolates 4b–e in 52–61% yields (entries 1–
5). Substituents on the benzene ring of 3 did not significantly affect
the yield of 4. Pyridyl derivatives 3f and 3g also underwent the
reaction giving desired 4f and 4g, but the yields were 16% and
27%, respectively (entries 6 and 7). The low yields of 4f and 4g were
probably due to poor migration ability of the electron-deficient
pyridine ring. The reactions with 3h–j bearing five-membered het-
eroacromatics also proceeded to give the corresponding propio-
lates 4h–j in moderate yields (entries 7–9). In addition, the
reaction was applicable to the synthesis of arylpropiolamide 6
from aryl(oxo)acetamide 5, though prolonged reaction time was
required and the yield was low (Scheme 1).9,11

In conclusion, the present method makes possible the easy con-
version of aryl(oxo)acetates, readily prepared from arylmetals
(arylmagnesium bromide or aryllithium) and oxalate deriva-
tives,12–14 to arylpropiolates and will provide an added flexibility
in the synthesis of arylpropiolates.
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